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Abstract: The present investigation deals with the two-
dimensional deformation because of laser pulse heat-
ing in a thermoelastic microelongated layer with a thick-
ness of 2d, which is immersed in an infinite nonviscous
fluid. Normalmode analysis technique is applied to obtain
the analytic expressions for displacement component,
force stress, temperature distribution, and microelonga-
tion. The effect of elongation and laser pulse rise time on
the derived components have been depicted graphically.
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1 Introduction
To model the behavior of materials having internal
structure, classical theory is not sufficient. Eringen and
Suhubi [1, 2] developed a nonlinear theory of microelas-
tic solids. Later on, a theory in which material particles in
solids can undergo macro-deformations as well as micro-
rotations was formulated by Eringen [3–5], and this the-
ory was named as “linear theory of micropolar elastic-
ity.” Then a theory of micropolar elastic solid with stretch
was introduced by Eringen [6] in which he included axial
stretch. Thermal effects were included in the micropolar
theory by various authors [7–10]. Lord and Shulman [11] is
one of the two important generalized theories of thermoe-
lasticity, and the second one is the theory of temperature-
rate-dependent thermoelasticity. In a review of thermody-
namics of thermoelastic solids (TSs), Muller [12] proposed
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an entropy production inequality, with which he applied
restrictions on a class of constitutive equations. A gener-
alization of this inequality was proposed by Green and
Laws [13]. Green and Lindsay [14] obtained another ver-
sion of these constitutive equations. Suhubi [15] obtained
these equations independently and explicitly, which con-
tain two constants that act as relaxation times and trans-
form all the equations of coupled theory.

Dhaliwal et al. [16] investigated thermoelastic inter-
actions caused by a continuous line heat source in a ho-
mogeneous, isotropic, unbounded solid. Chandrasekhara-
iah and Srinath [17] studied thermoelastic interactions be-
cause of a continuous point heat source in a homogeneous
and isotropic unbounded body. Sharma and Chauhan [18]
discussed mechanical and thermal sources in a general-
ized thermoelastic half-space. Sarbani and Amitava [19]
studied the transient disturbance in half-space because
of moving internal heat source under L-S model and ob-
tained the solution for displacements in the transformed
domain. Youssef [20] solved the problem on a general-
ized thermoelastic infinite mediumwith a spherical cavity
subjected to a moving heat source. Shaw and Mukhopad-
hyay [21, 22] discussed a few problems on thermoelastic
microelongated medium.

Laser heating has become a very dominant aspect in
the surface deformation of material in modern sciences.
Laser is a very flexible device for carrying out change in
the surfaces of materials.When the intensity is very high,
laser interacts with the surface of solid and absorption
takes place at the surface of solid. To modify the mate-
rial as thin films, the microscopic two-step model is there,
parabolic andhyperbolic.Whena laser pulseheats ametal
film, a thermoelastic wave is generated because of ther-
mal expansion near the surface. Sun et al. [27] investi-
gated laser-induced vibrations of microbeams in which
he showed that a large thermal gradient exists at the
boundaries for ultra-short-pulsed laser heating. Youssef
and Al-Felali [28] discussed the effect of thermal load-
ing because of laser pulse in generalized thermoelastic-
ity problem. Youssef and El-Bary [29] studied the response
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owing to laser pulse heating in thermoelastic material.
Othman et al. [30] discussed thermoelasticity under ther-
mal loading caused by laser pulse. Othman and Hilal [31]
discussed the influence of temperature dependent proper-
ties and gravity on porous TS because of laser pulse heat-
ing. Othman and Abd-Elaziz [32] studied the effect of ther-
mal loading caused by laser pulse in generalized thermoe-
lastic medium with voids in dual-phase lag model. Ku-
mar et al. [33] discussed the thermomechanical interac-
tions because of laser pulse in microstretch thermoelas-
tic medium. Othman and Tantawi [34] investigated the ef-
fect of the gravitational field on a two-dimensional ther-
moelastic medium influenced by thermal loading caused
by a laser pulse. Abbas and Marin [35] discussed applica-
tions of thermoelastic diffusion processes and the analyt-
ical solutions of a two-dimensional generalized thermoe-
lastic diffusion problem because of laser pulse.

The field equation of motion for the displacement, mi-
croelongation, and temperature changes according to [23–
25] is

(λ + µ)uj,ij + µui,jj − β0
(︂
1 + t1δ2k

∂
∂t

)︂
T,i + λ0ϕ,i (1)

= ρüi

a0ϕ,ii + β1
(︂
1 + t1δ2k

∂
∂t

)︂
T − λ1ϕ − λ0uj,j =

1
2ρj0ϕ̈ (2)

K*T,ii − ρC*
(︂
1 + t0δ1k

∂
∂t

)︂
Ṫ (3)

− β0T0
(︂
1 + t0δ1k

∂
∂t

)︂ .
u̇k,k − β1T0ϕ̇+ ρQ̇ = 0

where Q is the heat input of the laser pulse that il-
luminates the plate surface and is given by Q =
I0𝛾t

2πr2 t*2
exp

(︁
− y

2

r2 −
t
t*

)︁
exp (−𝛾x) .

where I0 is the energy absorbed, t* is the pulse rise
time, r is the beam radius, y is the heat deposition be-
cause of laser pulse that is assumed to decay exponentially
within the solid, β0 = (3λ+2µ)αt1 , β1 = (3λ+2µ)αt2 , a0, λ0,
λ1 are microelongational constants, C* is the specific heat
at constant strain, K* is the thermal conductivity, αt1and
αt2 are the coefficent of linear thermal expansion where
Tis the temperature above reference temperature T0, ϕ is
the microelongational scalar, u⃗ = (ui) is the displacement
vector, and k = 2 for Green–Lindsay (GL) theory.

The equations of motion and stress components in
fluid are given by [26] as

λf ufi,ij = ρ
f üfi (4)

tfij = λ
f ufr,rδij (5)

where u⃗f = (ufi ) is the displacement vector; λf is the fluid
constant, and ρf is the density of fluid.

We have restricted our analysis to the plane strain par-
allel to xy plane. A homogeneous isotropic, microelon-
gated thermoelastic layer with a thickness of 2d occupying
the region −d ≤ x ≤ d with a displacement vector u⃗ given
by u⃗i = (u1, u2, 0), a displacement vector u⃗f for infinite
nonviscous fluid as u⃗fi = (uf1, u

f
2, 0), is considered. The ge-

ometry of the problem is given in Figure 1.
         

 
 

       

    

  

  

 

  

   

         

   

   

    

 

         

      

   

 

    

               

Figure 1: The geometry of the problem

Hence, equations (1)–(3) become

(λ + 2µ)∂
2u1
∂x2 + (λ + µ) ∂

2u2
∂x∂y + µ

∂2u1
∂y2 (6)

− β0
(︂
1 + t1δ2k

∂
∂t

)︂
∂T
∂x + λ0

∂ϕ
∂x = ρ ∂

2u1
∂t2

µ ∂
2u2
∂x2 + (λ + µ) ∂

2u1
∂x∂y + (λ + 2µ)

∂2u2
∂y2 (7)

− β0
(︂
1 + t1δ2k

∂
∂t

)︂
∂T
∂y + λ0

∂ϕ
∂y = ρ ∂

2u2
∂t2

a0
(︂
∂2ϕ
∂x2 + ∂

2ϕ
∂x2

)︂
+ β1

(︂
1 + t1δ2k

∂
∂t

)︂
T − λ1ϕ (8)

− λ0
(︂
∂u1
∂x + ∂u2∂y

)︂
= 1
2ρj0

∂2ϕ
∂t2

K*
(︂
∂2T
∂x2 + ∂

2T
∂x2

)︂
− ρC*

(︂
1 + t0δ1k

∂
∂t

)︂
∂T
∂t (9)

− β0T0
(︂
∂
∂t + t0δ1k

∂2
∂t2

)︂ .(︂
∂u1
∂x + ∂u2∂y

)︂
− β1T0

∂ϕ
∂t +ρ

∂Q
∂t

= 0
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constitutive components of microelongational stress ten-
sor are given by

σxx = (λ + 2µ)∂u1∂x + λ ∂u2∂y − β0
(︂
1 + t1δ2k

∂
∂t

)︂
T (10)

+ λ0ϕ

σyy = λ
∂u1
∂x + (λ + 2µ)∂u2∂y − β0

(︂
1 + t1δ2k

∂
∂t

)︂
T (11)

+ λ0ϕ

σxy = µ
(︂
∂u1
∂y + ∂u2∂x

)︂
(12)

To simplify computation, we consider the following
nondimensional variables:

x
′
= ω

*

c1
x, y

′
= ω

*

c1
y, u

′

i =
ω*ρc1
β0T0

ui , t
′
= ω*t, (13)

t
′

0 = ω*t0, t
′

1 = ω*t1, σ
′

ij =
σij
β0T0

, ϕ
′
= λ0
β0T0

ϕ,

T
′
= T
T0
, Q

′
= 1
C*T0

Q.

where ω* = ρc21C*
K* and c21 =

λ+2µ
ρ .

Using the above nondimensional variables given by
(13) in (6)–(9) (after dropping superscripts), we get

∂2u1
∂x2 + l2

∂2u2
∂x∂y + l3

∂2u1
∂y2 −

(︂
1 + t1δ2k

∂
∂t

)︂
∂T
∂x (14)

+ ∂ϕ∂x = ∂
2u1
∂t2 ,

l3
∂2u2
∂x2 + l2

∂2u1
∂x∂y +

∂2u2
∂y2 −

(︂
1 + t1δ2k

∂
∂t

)︂
∂T
∂y (15)

+ ∂ϕ∂y = ∂
2u2
∂t2 ,

(︂
∂2ϕ
∂x2 + ∂

2ϕ
∂x2

)︂
+ l4

(︂
1 + t1δ2k

∂
∂t

)︂
T − l5ϕ (16)

− l6
(︂
∂u1
∂x + ∂u2∂y

)︂
= l7

∂2ϕ
∂t2 ,

(︂
∂2T
∂x2 + ∂

2T
∂x2

)︂
− l8

(︂
1 + t0δ1k

∂
∂t

)︂
∂T
∂t (17)

− l9
(︂
∂
∂t + t0δ1k

∂2
∂t2

)︂ .(︂
∂u1
∂x + ∂u2∂y

)︂
− l10

∂ϕ
∂t +l11

∂Q
∂t

= 0.

The constitutive relations (10)–(12) in dimensionless
form reduces to

σxx =
∂u1
∂x + l12

∂u2
∂y −

(︂
1 + t1δ2k

∂
∂t

)︂
T + ϕ, (18)

σyy = l12
∂u1
∂x + ∂u2∂y −

(︂
1 + t1δ2k

∂
∂t

)︂
T + ϕ, (19)

σxy = l3
(︂
∂u1
∂y + ∂u2∂x

)︂
, (20)

where l2 = (λ+µ)
ρc21

, l3 = µ
ρc21

, l4 = β1λ0c21
a0ω*β0 , l5 =

λ1c21
a0ω* ,l6 =

λ02
ρa0ω* ,

l7 = ρj0ω*c21
2a0 , l8 = ρC*c21

K*ω* , l9 = β20T0
K*ω*ρ , l10 = β0β1T0c21

K*ω*λ0 , l11 =
ρC*c21
K*ω* , and l12 =

λ
ρc21

.

2 Solution of the Problem
Here, we use normal mode analysis technique to find the
solution of the considered physical variables in the follow-
ing form:

(ui , T, ϕ, σij)(x, y, t) = (u*i , T*, ϕ*, σ*ij)(x)eωt+iby (21)

where ω is the complex frequency, b is the wave number
in y-direction, and u*i (x), T*(x), ϕ*(x), and σ*ij(x) are the
amplitudes of field quantities.

Using (21) in (14)–(20), we get

(D2 − B1)u*1 + ibl2Du*2 − B2DT* + Dϕ* = 0, (22)

ibl2Du*1 + (l3D2 − B3)u*2 − ibB2T* + ibϕ* = 0, (23)

−l6Du*1 − ibl6u*2 + B2l4T* + (D2 − B4)ϕ* = 0, (24)

− l9B6Du*1 − ibl9B6u*2 + (D2 − B7)T* − l10ωϕ* (25)
= Q1F(y, t) exp(−𝛾x),

σ*xx = Du*1 + ibl12u*2 − B2T* + ϕ*, (26)

σ*yy = l12Du*1 + ibu*2 − B2T* + ϕ*, (27)

σ*xy = l3
(︁
ibu*1 + Du*2

)︁
, (28)

whereD ≡ d
dx , F(y, t) =

(︀
1 − t

t*
)︀
exp

(︁
− y

2

r2 −
t
t* − ωt − iby

)︁
,

Q1 = −l11 I0𝛾
2πr2 t*2

,B1 = ω2+l3b2,B2 = (1+t1δ2kω),B3 = ω2+b2,
B4 = b2 + l5 + l7ω2, B5 = (1+ t0δ1kω), B6 = ω(1+ t0δ1kω),
and B7 = b2 + l8A5ω.

Eliminating u*2(x), T*(x), and ϕ*(x) from equations
(22)–(25), we get the differential equation for u*1(x) as

(D8 + AD6 + BD4 + CD2 + E)u*1(x) (29)
= RF(y, t) exp(−𝛾x)
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where

A = −1l3

[︁
l3(B4 + B7) − B3 + l3B1 + l3l6 + B2l3l9B6 + b2l22

]︁

B = −1l3

[︁
−B2l4l10l3ω + l3B4B7 + B3(B4 + B7) − b2B2B6l9

+ b2B6 − B1l3(B4 + B7) + B1B3 − b2l22(B4 + B7)
+ l3l6l10B2ω − l3l9B2B4B6 − l9B2B3B6 − l3l6B7

− l3l4l9B2B6 − B3l6
]︁

C = −1l3

[︁
B2B3l4l10ω + B3B4B7 − b2l6l10B2ω

+ b2l9B2B4B6 − b2l6B7 − b2l4l9B2B6 + B1B2l3l4l10ω2

− l3B1B4B7 + B1B3(B4 + B7) + b2B1B2B6l9
+ b2l22B2l4l10ω + b2l22B4B7 − 2b2B7l2l6 − 2b2B2B6l2l4l9
− l6l10B2B3ω + B2B3B4B6l9 + B3B7l6 + B2B3B6l4l9

− b2l6B1
]︁

E = −1l3

[︁
−l4l10B1B2B3ω − B1B3B4B7 + b2l6l10B1B2ω

− b2l9B1B2B4B6 + b2l6B1B7 + b2l4l9B1B2B6
]︁

R = ibB2Q1
l3

[︁
−l3𝛾5 +

{︁
(B3 − b2l2) − l3(l4 − B4)

}︁
𝛾3

+ (l4 − B4)(B3 − b2l2)𝛾
]︁

Equation (29) can be written as

(D2 − k21)(D2 − k22)(D2 − k23)(D2 − k24)u*1(x) (30)
= RF(y, t) exp(−𝛾x)

where k2n is the roots of equation (29).
The solution of equation (29) can be considered in se-

ries form as

u*1(x) =
4∑︁
n=1

[Ln(b, ω)e−knx] +
4∑︁
n=1

[Ln+4(b, ω)eknx] (31)

+ ξ exp(−𝛾x)

u*2(x) =
4∑︁
n=1

[L
′

n(b, ω)e−knx] +
4∑︁
n=1

[L
′

n+4(b, ω)eknx] (32)

+ ξ1 exp(−𝛾x)

T*(x) =
4∑︁
n=1

[L
′′

n (b, ω)e−knx] +
4∑︁
n=1

[L
′′

n+4(b, ω)eknx] (33)

+ ξ2 exp(−𝛾x)

ϕ*(x) =
4∑︁
n=1

[L
′′′

n (b, ω)e−knx] +
4∑︁
n=1

[L
′′′

n+4(b, ω)eknx] (34)

+ ξ3 exp(−𝛾x)

where Ln(b, ω), L
′
n(b, ω), L

′′
n (b, ω), L

′′′
n (b, ω) are specific

function depending on b and ω.
Using (31)–(34) in (22)–(25), we get

L
′

n(b, ω) = R1nLn(b, ω); L
′

n+4(b, ω) (35)
= R1(n+4)Ln+4(b, ω)

L
′′

n (b, ω) = R2nLn(b, ω); L
′′

n+4(b, ω) (36)
= R2(n+4)Ln+4(b, ω)

L
′′′

n (b, ω) = R3nLn(b, ω); L
′′′

n+4(b, ω) (37)
= R3(n+4)Ln(b, ω)

Using (35)–(37), the solution of physical quantities in se-
ries form can be rewritten as

u*2(x) =
4∑︁
n=1

[R1nLn(b, ω)e−knx] (38)

+
4∑︁
n=1

[R1(n+4)L(n+4)(b, ω)e
knx] + ξ1 exp(−𝛾x)

T*(x) =
4∑︁
n=1

[R2nLn(b, ω)e−knx] (39)

+
4∑︁
n=1

[R2(n+4)L(n+4)(b, ω)e
knx] + ξ2 exp(−𝛾x)

ϕ*(x) =
4∑︁
n=1

[R3nLn(b, ω)e−knx] (40)

+
4∑︁
n=1

[R3(n+4)L(n+4)(b, ω)e
knx] + ξ3 exp(−𝛾x)

σ*xx(x) =
4∑︁
n=1

[R4nLn(b, ω)e−knx] (41)

+
4∑︁
n=1

[R4(n+4)L(n+4)(b, ω)e
knx] + ξ4 exp(−𝛾x)

σ*yy(x) =
4∑︁
n=1

[R5nLn(b, ω)e−knx] (42)

+
4∑︁
n=1

[R5(n+4)L(n+4)(b, ω)e
knx] + ξ5 exp(−𝛾x)



A thermoelastic microelongated layer immersed in an infinite fluid | 237

σ*xy(x) =
4∑︁
n=1

[R6nLn(b, ω)e−knx] (43)

+
4∑︁
n=1

[R6(n+4)L(n+4)(b, ω)e
knx] + ξ6 exp(−𝛾x)

where

R1n =
ib[B1 − (l2 − 1)k2n]

[(B3 − b2l2)kn − l3k3n]
,

R1(n+4) =
ib[B1 − (l2 − 1)k2n]

[(b2l2 − B3)kn + l3k3n]
,

R2n =
[l3k4n − (B4l3 + B3)k2n + (B3B4 − b2l6)]R1n

ib[B2(k2n − B4) + B2l4]

− ib[l2k
3
n − (l2B4 − l6)kn]

ib[B2(k2n − B4) + B2l4]
,

R3n =
(k2n − B1 − ibl2knR1n + B2knR2n)

kn
,

R3(n+4) =
(B1 − k2n − ibl2knR1(n+4) + B2knR2(n+4))

kn
,

R4n = ibl12R1n − B2R2n + R3n − kn ,

R4(n+4) = ibl12R1(n+4) − B2R2(n+4) + R3(n+4) + kn ,

R5n = ibR1n − B2R2n + R3n − l12kn ,

R6n = l3(ib − knR1n), R6(n+4) = l3(ib + knR1(n+4)),

ξ = RF(y, t)
𝛾8 + A𝛾6 + B𝛾4 + C𝛾2 + E ,

ξ1 =
ib[(1 − l2)𝛾2 − B1]ξ
[(B3 − b2l2)𝛾 − l3𝛾3]

,

ξ2 =
[l3𝛾4 − (B4l3 + B3)𝛾2 + (B3B4 − b2l6)]ξ1

ib[B2(𝛾2 − B4) + B2l4]

− ib[l2𝛾
3 − (l2B4 − l6)𝛾]ξ

ib[B2(𝛾2 − B4) + B2l4]
,

ξ3 =
(𝛾2 − B1)ξ − ibl2𝛾ξ1 + B2𝛾ξ2

𝛾
,

ξ4 = ibl12ξ1 − B2ξ2 + ξ3 − 𝛾ξ ,

ξ5 = ibξ1 − B2ξ2 + ξ3 − l12𝛾ξ ,

ξ6 = ibl3ξ − 𝛾 l3ξ1.

Similarly, for infinite nonviscous fluid, the solutions
are of the form

uf1(z) = L9(a, ω)e
−k5x + L10(a, ω)ek5x , (44)

uf (z)2 = L
′

9(a, ω)e−k5x + L
′

10(a, ω)ek5x , (45)

where L9(a, ω), L10(a, ω) and L
′

9(a, ω), L
′

10(a, ω) are spe-
cific function depending on a, ω, and k25 are roots of the
characteristic equation,(︁

D2 − k25
)︁
uf*1 (z) = 0 (46)

where k25 = a2 − l1ω2

and l1 = ρf c21
λf .

Thus we have

uf
*

2 (z) = R71L9(a, ω)e
−k5x + R72L10(a, ω)ek5x , (47)

σf
*

xx(z) = R81L9(a, ω)e−k5x + R82L10(a, ω)ek5x , (48)

where R71 = k25−l1ω
2

ia(−k5) , R72 =
k25−l1ω

2

iak5 , R81 = (λf )(iaR71+k5)
ρc21

, and

R82 = (λf )(iaR72−k5)
ρc21

.

3 Boundary Conditions
To determine the constants Ln (n = 1, 2, . . . , 10), the bound-
ary conditions at x = ±d are

(i) (σxx)s = (σxx) (49)
(ii) (σxy)s = 0 at x = ±d,

(iii)
(︂
∂u2
∂x

)︂
s
=
(︂
∂u2
∂x

)︂
f
at x = ±d,

(iv)
(︂
∂T
∂x

)︂
s
= 0 at x = ±d,

(v) ϕ = 0 at x = ±d.

Using the expressions for (σxx)s, (σxy)s, (u2)s, ϕ, (σxy)f ,
(u2)f , and T in (49), we get

4∑︁
n=1

[R4nLne−knd + R4(n+4)L(n+4)e
knd] − R81L9e−k5d

= −ξ4e−𝛾d ,
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4∑︁
n=1

[R4nLneknd + R4(n+4)L(n+4)e
−knd] − R82L10e−k5d

= −ξ4e𝛾d ,

4∑︁
n=1

[R6nLne−knd + R6(n+4)L(n+4)e
knd] = −ξ6e−𝛾d ,

4∑︁
n=1

[R6nLneknd + R6(n+4)L(n+4)e
−knd] = −ξ6e𝛾d ,

4∑︁
n=1

[R1nLne−knd + R1(n+4)L(n+4)e
knd] − R71L9e−k5d

= −ξ1e−𝛾d ,

4∑︁
n=1

[R1nLneknd + R1(n+4)L(n+4)e
−knd] − R72L9e−k5d

= −ξ1e𝛾d ,

4∑︁
n=1

[−knR2nLne−knd + knR2(n+4)L(n+4)e
knd] = −ξ2𝛾e−𝛾d ,

4∑︁
n=1

[−knR2nLneknd + knR2(n+4)L(n+4)e
−knd] = −ξ2𝛾e−𝛾d ,

4∑︁
n=1

[R3nLne−knd + R3(n+4)L(n+4)e
knd] = −ξ3e−𝛾d ,

4∑︁
n=1

[R3nLneknd + R3(n+4)L(n+4)e
−knd] = −ξ3e−𝛾d .

Solving the above system of nonhomogeneous equations,
we get the values of constants Ln (n = 1, 2, . . . , 10) and,
hence, obtain the components of normal displacement,
normal force stress, temperature distribution, andmicroe-
longation for microelongated thermoelastic layer under
laser pulse heating.

4 Particular Case
If we neglectmicroelongation effect, that is, λ0 = β1 = λ1 =
a0 = j0 = 0, we obtain the results for TS.

5 Numerical Results, Discussion,
and Conclusions

For numerical computations, we consider the values of
constants for aluminum epoxy-like material as [22] λ =
7.59 × 1010 N/m2, µ = 1.89 × 1010 N/m2, a0 = 0.61 ×
10−10 N, ρ = 2.19 × 103 kg/m3 β1 = 0.05 × 105 N/m2K,
β0 = 0.05 × 105 N/m2K, CE = 966 J/(kg K), T0 = 293
K, j0 = 0.196 × 10−4 m2, λ0 = λ1 = 0.37 × 1010 N/m2,
t0 = 0.01, K = 252 J/ms K.

The physical constants for water as nonviscous fluid
are given by [26] λf = 2.14×109 N/m2 and ρf= 103 kg/m3.

The computations are carried out for the value of
nondimensional time t = 0.2 in the range 0 ≤ y ≤ 1.0
and on the surface x = 1.0. The numerical values for nor-
mal displacement, normal force stress, temperature distri-
bution, and microelongation are shown in Figures 2–5 for
generalized theory (GL theory) by taking δ1k = 0, δ2k = 1,
and r = 10 µm,I0 = 10 J/m, 𝛾 = 50/m, ω = ω0 + ιζ , ,
ω0 = −0.2, ζ = 0.1, and b = 0.7 for

(a) Thermoelastic microelongated solid (TMS) with a
pulse rise time of t* = 0.1 by solid line with dashed
symbol ◊.

(b) TMS with a pulse rise time of t* = 0.01 by dashed
line with centered symbol�.

(c) TS with a pulse rise time of t* = 0.1 by dashed line
with centered symbol N.

(d) TS with a pulse rise time of t* = 0.01 by dashed line
with centered symbol ×.

6 Discussions
The variations of normal displacement and temperature
distribution are similar in nature for TMS and TS in the
range 0 ≤ y ≤ 1.0. The values for TS for a pulse rise
time of t* = 0.1 are more as compared to the values at
t* = 0.01 with the values decreasing very sharply in the
range 0 ≤ y ≤ 0.2, showing the appreciable effect of laser
pulse heating, which approaches to zero with the increase
in horizontal distance. The variations of normal displace-
ment and temperature distribution are illustrated in Fig-
ures 2 and 3.

The variations of normal force stress are similar for
TMS and TS for t* = 0.1 as that of normal displacement
and temperature distribution, with the values coinciding
for t* = 0.01 the variations of normal force stress are
shown in Figure 4.
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Figure 2: Variations of normal displacement with horizontal dis-
tance

Figure 3: Variations of temperature distribution with horizontal
distance

From Figure 5, it is clear that the variations of microe-
longation is more for TMS at t* = 0.01 than that for which
decreases sharply in the range 0 ≤ y ≤ 0.2 and then con-
verges to zerowith the increase in horizontal distance. The
variations of microelongation are shown in Figure 5.

7 Conclusion
(a) An analytical solution of the problem on thermoe-

lastic microelongated layer surrounded by infinite
fluid under the effect of laser pulse heating is devel-
oped.

(b) A significant effect of laser pulse heating and pulse
rise time is observed on all the quantities, that
is, normal displacement, temperature distribution,
and normal force stress and microelongation.

(c) All the physical quantities, that is, normal dis-
placement, temperature distribution, normal force
stress, andmicroelongation approaches to zero very
sharply as the horizontal distance increases, that is,
as y →∞.

Figure 4: Variations of normal force stress with horizontal distance

Figure 5: Variations of microelongation with horizontal distance

(d) Microelongation has an appreciable effect on all the
considered physical quantities.

(e) The applied boundary conditions play an prominent
role in deformation of the solid.

(f) The laser pulse heating is used in the geological
treatments of the material particles and to modify
the surface properties of the material.

References
[1] A.C. Eringen and E.S. Suhubi: Nonlinear theory of simple micro-

elastic solids I,International Journal of Engineering Science, 2,
1964, 189-203.

[2] E.S. Suhubi and A.C. Eringen: Nonlinear theory of micro-elastic
II, International Journal of Engineering Science, 2, 1964, 389-
404.

[3] A.C. Eringen: Linear theory of micropolar elasticity, ONR Techni-
cal report No. 29, School of Aeronautics, Aeronautics and Engi-
neering Science, Purdue University, 1965.

[4] A.C. Eringen: A unified theory of thermomechanical materials,
International Journal of Engineering Science, 4, 1966, 179-202.

[5] A.C. Eringen: Linear theory of micropolar elasticity, Journal of
Mathematics and Mechanics, Vol. 15, 1966, 909-923.

[6] A.C. Eringen: Micropolar elastic solids with strech, Ari Kitabevi
Matbassi, 24, 1971, 1-18.

[7] W.Nowacki: Couple stresses in the theory of thermoelasticity III,
Bulletin of the Polish Academy of Sciences Technical Sciences,



240 | P. Ailawalia and A. Singla

8, 1966, 801-809.
[8] A.C. Eringen: Foundation of micropolar thermoelasticity,

Courses and Lectures, No. 23, CISM, Udine, Springer-Verlag,
Vienna and New York, 1970.

[9] T.R. Tauchert, W.D. Claus Jr. and T. Ariman: The linear theory of
micropolar thermoelasticity, International Journal of Engineer-
ing Science, 6, 1968, 36-47.

[10] W. Nowacki and W. Olszak: Micropolar thermoelasticity, in
W.Nowacki andOlszak(eds.), Micropolar thermoelasticity, CISM
Courses and Lectures, No. 151, Udine,Springer-Verlag, Vienna,
1974.

[11] H.W. Lord and Y. Shulman: A generalized dynamical theory
of thermo-elasticity, Journal of the Mechanics and Physics of
Solids, 15, 1967, 299-306.

[12] I.M. Muller,: The coldness, universal function in thermoelastic
bodies, Rational Mechanics Analysis, 41, 1971, 319-332.

[13] A.E. Green and N. Laws,: On the entropy production inequality,
Archives of Rational Mechanics and Analysis, 45, 1972, 45-47.

[14] A.E. Green and K.A. Lindsay,: Thermoelasticity, Journal of Elas-
ticity, 2, 1972, 1-7.

[15] E.S. Suhubi,:Thermoelastic solids in continuum physics, New
York, 1975.

[16] R.S.Dhaliwal, S.R.Majumdar, and J.Wang: Thermoelastic waves
in an infinite solid caused by a line heat source,International
Journal of Mathematics and Mathematical Sciences, 20(2),
1997, 323-334.

[17] D.S. Chandrasekharaiah and K.S. Srinath: Thermoelastic in-
teractions without energy dissipation due to a point heat
source,Journal of Elasticity, 50, 1998, 97-108.

[18] J.N. Sharma, and R.S. Chauhan: Mechanical and thermal
sources in a generalized thermoelastic half-space. Journal of
Thermal Stresses, 24(7), 2001, 651-675.

[19] C. Sarbani and C. Amitava: Transient disturbance in a relaxing
thermoelastic half-space due tomoving internal heat source, In-
ternational Journal of Mathematics andMathematical Sciences,
22, 2004, 595-602.

[20] H. M. Youssef: Generalized thermoelastic infinite medium with
spherical cavity subjected to moving heat source, Computa-
tional Mathematical Modelling, 21(2), 2010, 211–225.

[21] S. ShawandB.Mukhopadhyay. Periodically varying heat source
response in a functionally graded microelongated medium, Ap-
pliedMathematics and Computation, 128(11), 2012, 6304-6313.

[22] S. Shaw and B. Mukhopadhyay: Moving heat source response
in a thermoelastic microelongated solid, Journal of Engineering
Physics and Thermophysics, 86(3), 2013, 716-722.

[23] A. C. Eringen: Microcontinuum Field Theories, Foundations and
Solids, Springer Verlag, New York, 1, 1999.

[24] A. Kiris and E. Inan: 3-D vibration analysis of the rectangular
microdamaged plates, in Proceedings 8th International Confer-
ence on Vibration Problems (ICOVP), India , 207–214, 2007.

[25] S. De Cicco and L. Nappa: On the theory of thermomicrostretch
elastic solids, Journal of Thermal Stresses, 22, 1999, 565–580.

[26] Ewing, W. M., Jardetzky, W. S., and Press, F.: Elastic waves in
layered media. New York, NY: McGraw Hill, 1957.

[27] Sun, Y., Fang, D., Saka, M. and Soh, A. K.: Laser-induced
vibrations of micro beams under different boundary condi-
tions,International Journal of Solids and Structures, 45, 2008,
1993-2013.

[28] Youssef, H. M. and Al-Felali, A. S.: Generalized thermoelasticity
problem of material subjected to thermal loading due to laser
pulse,Applied Mathematics,3, 2012, 142-146.

[29] Youssef, H. M. and El-Bary, A. A.: Thermoelastic material re-
sponse due to laser pulse heating in context of four theorems
of thermoelasticity. Journal of Thermal Stresses, 37(12), 2014,
1379-1389.

[30] Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M.: The ef-
fect of rotation on fiber-reinforced under generalized magneto-
thermoelasticity subject to thermal loading due to laser pulse
comparison of different theories. Canadian Journal of physics,
92, 2014, 1-14.

[31] Othman, M.I.A. and Hilal, M.I.M.: Influence of temperature de-
pendent properties and gravity on porous thermoelastic solid
due to laser pulse heatingwithG-N Theory, International Journal
of Innovative Research in Science, Engineering and Technology,
4, 2015, 2310-2317.

[32] Othman, M.I.A. and Abd-Elaziz, E.M.: The effect of thermal load-
ing due to laser pulse in generalized thermoelasticmediumwith
voids in dual phase lag model, Journal of Thermal Stresses,
38(9), 2015, 1068-1082.

[33] Kumar, R., Kumar, A. and Singh, D.: Thermomechanical interac-
tions due to laser pulse in microstretch thermoelastic medium,
Archives of Mechanics, 67(6), 2015, 439–456.

[34] Othman, M.I.A and Tantawi, R.S, The effect of a laser pulse and
gravity field on a thermoelastic medium under Green–Naghdi
theory, Acta Mechanica, 227(12), 2016, 3571–3583.

[35] Abbas, I.A and Marin, M,: Analytical Solutions of a Two-
Dimensional Generalized Thermoelastic Diffusions Prob-
lem Due to Laser Pulse, Iranian Journal of Science and
Technology, Transactions of Mechanical Engineering, 2017,
https://doi.org/10.1007/s40997-017-0077-1.

https://doi.org/10.1007/s40997-017-0077-1

	1 Introduction
	2 Solution of the Problem
	3 Boundary Conditions
	4 Particular Case
	5 Numerical Results, Discussion, and Conclusions
	6 Discussions
	7 Conclusion

